开发者俱乐部

标题: Python机器学习库scikit-learn实践 [打印本页]

作者: jack    时间: 2016-2-4 19:49
标题: Python机器学习库scikit-learn实践

Python机器学习库scikit-learn实践

zouxy09@qq.com

http://blog.csdn.net/zouxy09

一、概述

       机器学习算法在近几年大数据点燃的热火熏陶下已经变得被人所“熟知”,就算不懂得其中各算法理论,叫你喊上一两个著名算法的名字,你也能昂首挺胸脱口而出。当然了,算法之林虽大,但能者还是有限,能适应某些环境并取得较好效果的算法会脱颖而出,而表现平平者则被历史所淡忘。随着机器学习社区的发展和实践验证,这群脱颖而出者也逐渐被人所认可和青睐,同时获得了更多社区力量的支持、改进和推广。

       以最广泛的分类算法为例,大致可以分为线性和非线性两大派别。线性算法有著名的逻辑回归、朴素贝叶斯、最大熵等,非线性算法有随机森林、决策树、神经网络、核机器等等。线性算法举的大旗是训练和预测的效率比较高,但最终效果对特征的依赖程度较高,需要数据在特征层面上是线性可分的。因此,使用线性算法需要在特征工程上下不少功夫,尽量对特征进行选择、变换或者组合等使得特征具有区分性。而非线性算法则牛逼点,可以建模复杂的分类面,从而能更好的拟合数据。

       那在我们选择了特征的基础上,哪个机器学习算法能取得更好的效果呢?谁也不知道。实践是检验哪个好的不二标准。那难道要苦逼到写五六个机器学习的代码吗?No,机器学习社区的力量是强大的,码农界的共识是不重复造轮子!因此,对某些较为成熟的算法,总有某些优秀的库可以直接使用,省去了大伙调研的大部分时间。

       基于目前使用python较多,而python界中远近闻名的机器学习库要数scikit-learn莫属了。这个库优点很多。简单易用,接口抽象得非常好,而且文档支持实在感人。本文中,我们可以封装其中的很多机器学习算法,然后进行一次性测试,从而便于分析取优。当然了,针对具体算法,超参调优也非常重要。

二、Scikit-learn的python实践

2.1、Python的准备工作

       Python一个备受欢迎的点是社区支持很多,有非常多优秀的库或者模块。但是某些库之间有时候也存在依赖,所以要安装这些库也是挺繁琐的过程。但总有人忍受不了这种繁琐,都会开发出不少自动化的工具来节省各位客官的时间。其中,个人总结,安装一个python的库有以下三种方法:

1)Anaconda

       这是一个非常齐全的python发行版本,最新的版本提供了多达195个流行的python包,包含了我们常用的numpy、scipy等等科学计算的包。有了它,妈妈再也不用担心我焦头烂额地安装一个又一个依赖包了。Anaconda在手,轻松我有!下载地址如下:http://www.continuum.io/downloads

2)Pip

       使用过Ubuntu的人,对apt-get的爱只有自己懂。其实对Python的库的下载和安装可以借助pip工具的。需要安装什么库,直接下载和安装一条龙服务。在pip官网https://pypi.python.org/pypi/pip下载安装即可。未来的需求就在#pip install xx 中。

3)源码包

       如果上述两种方法都没有找到你的库,那你直接把库的源码下载回来,解压,然后在目录中会有个setup.py文件。执行#python setup.py install 即可把这个库安装到python的默认库目录中。

2.2、Scikit-learn的测试

scikit-learn已经包含在Anaconda中。也可以在官方下载源码包进行安装。本文代码里封装了如下机器学习算法,我们修改数据加载函数,即可一键测试:

[python] view plain copy







作者: jack    时间: 2016-2-4 19:49
train_test.py
[python] view plain copy
#!usr/bin/env python  
#-*- coding: utf-8 -*-  
  
import sys  
import os  
import time  
from sklearn import metrics  
import numpy as np  
import cPickle as pickle  
  
reload(sys)  
sys.setdefaultencoding('utf8')  
  
# Multinomial Naive Bayes Classifier  
def naive_bayes_classifier(train_x, train_y):  
    from sklearn.naive_bayes import MultinomialNB  
    model = MultinomialNB(alpha=0.01)  
    model.fit(train_x, train_y)  
    return model  
  
  
# KNN Classifier  
def knn_classifier(train_x, train_y):  
    from sklearn.neighbors import KNeighborsClassifier  
    model = KNeighborsClassifier()  
    model.fit(train_x, train_y)  
    return model  
  
  
# Logistic Regression Classifier  
def logistic_regression_classifier(train_x, train_y):  
    from sklearn.linear_model import LogisticRegression  
    model = LogisticRegression(penalty='l2')  
    model.fit(train_x, train_y)  
    return model  
  
  
# Random Forest Classifier  
def random_forest_classifier(train_x, train_y):  
    from sklearn.ensemble import RandomForestClassifier  
    model = RandomForestClassifier(n_estimators=8)  
    model.fit(train_x, train_y)  
    return model  
  
  
# Decision Tree Classifier  
def decision_tree_classifier(train_x, train_y):  
    from sklearn import tree  
    model = tree.DecisionTreeClassifier()  
    model.fit(train_x, train_y)  
    return model  
  
  
# GBDT(Gradient Boosting Decision Tree) Classifier  
def gradient_boosting_classifier(train_x, train_y):  
    from sklearn.ensemble import GradientBoostingClassifier  
    model = GradientBoostingClassifier(n_estimators=200)  
    model.fit(train_x, train_y)  
    return model  
  
  
# SVM Classifier  
def svm_classifier(train_x, train_y):  
    from sklearn.svm import SVC  
    model = SVC(kernel='rbf', probability=True)  
    model.fit(train_x, train_y)  
    return model  
  
# SVM Classifier using cross validation  
def svm_cross_validation(train_x, train_y):  
    from sklearn.grid_search import GridSearchCV  
    from sklearn.svm import SVC  
    model = SVC(kernel='rbf', probability=True)  
    param_grid = {'C': [1e-3, 1e-2, 1e-1, 1, 10, 100, 1000], 'gamma': [0.001, 0.0001]}  
    grid_search = GridSearchCV(model, param_grid, n_jobs = 1, verbose=1)  
    grid_search.fit(train_x, train_y)  
    best_parameters = grid_search.best_estimator_.get_params()  
    for para, val in best_parameters.items():  
        print para, val  
    model = SVC(kernel='rbf', C=best_parameters['C'], gamma=best_parameters['gamma'], probability=True)  
    model.fit(train_x, train_y)  
    return model  
  
def read_data(data_file):  
    import gzip  
    f = gzip.open(data_file, "rb")  
    train, val, test = pickle.load(f)  
    f.close()  
    train_x = train[0]  
    train_y = train[1]  
    test_x = test[0]  
    test_y = test[1]  
    return train_x, train_y, test_x, test_y  
      
if __name__ == '__main__':  
    data_file = "mnist.pkl.gz"  
    thresh = 0.5  
    model_save_file = None  
    model_save = {}  
      
    test_classifiers = ['NB', 'KNN', 'LR', 'RF', 'DT', 'SVM', 'GBDT']  
    classifiers = {'NB':naive_bayes_classifier,   
                  'KNN':knn_classifier,  
                   'LR':logistic_regression_classifier,  
                   'RF':random_forest_classifier,  
                   'DT':decision_tree_classifier,  
                  'SVM':svm_classifier,  
                'SVMCV':svm_cross_validation,  
                 'GBDT':gradient_boosting_classifier  
    }  
      
    print 'reading training and testing data...'  
    train_x, train_y, test_x, test_y = read_data(data_file)  
    num_train, num_feat = train_x.shape  
    num_test, num_feat = test_x.shape  
    is_binary_class = (len(np.unique(train_y)) == 2)  
    print '******************** Data Info *********************'  
    print '#training data: %d, #testing_data: %d, dimension: %d' % (num_train, num_test, num_feat)  
      
    for classifier in test_classifiers:  
        print '******************* %s ********************' % classifier  
        start_time = time.time()  
        model = classifiers[classifier](train_x, train_y)  
        print 'training took %fs!' % (time.time() - start_time)  
        predict = model.predict(test_x)  
        if model_save_file != None:  
            model_save[classifier] = model  
        if is_binary_class:  
            precision = metrics.precision_score(test_y, predict)  
            recall = metrics.recall_score(test_y, predict)  
            print 'precision: %.2f%%, recall: %.2f%%' % (100 * precision, 100 * recall)  
        accuracy = metrics.accuracy_score(test_y, predict)  
        print 'accuracy: %.2f%%' % (100 * accuracy)   
  
    if model_save_file != None:  
        pickle.dump(model_save, open(model_save_file, 'wb'))  

四、测试结果
       本次使用mnist手写体库进行实验:http://deeplearning.net/data/mnist/mnist.pkl.gz。共5万训练样本和1万测试样本。
       代码运行结果如下:
[python] view plain copy
reading training and testing data...  
******************** Data Info *********************  
#training data: 50000, #testing_data: 10000, dimension: 784  
******************* NB ********************  
training took 0.287000s!  
accuracy: 83.69%  
******************* KNN ********************  
training took 31.991000s!  
accuracy: 96.64%  
******************* LR ********************  
training took 101.282000s!  
accuracy: 91.99%  
******************* RF ********************  
training took 5.442000s!  
accuracy: 93.78%  
******************* DT ********************  
training took 28.326000s!  
accuracy: 87.23%  
******************* SVM ********************  
training took 3152.369000s!  
accuracy: 94.35%  
******************* GBDT ********************  
training took 7623.761000s!  
accuracy: 96.18%  

       在这个数据集中,由于数据分布的团簇性较好(如果对这个数据库了解的话,看它的t-SNE映射图就可以看出来。由于任务简单,其在deep learning界已被认为是toy dataset),因此KNN的效果不赖。GBDT是个非常不错的算法,在kaggle等大数据比赛中,状元探花榜眼之列经常能见其身影。三个臭皮匠赛过诸葛亮,还是被验证有道理的,特别是三个臭皮匠还能力互补的时候!
       还有一个在实际中非常有效的方法,就是融合这些分类器,再进行决策。例如简单的投票,效果都非常不错。建议在实践中,大家都可以尝试下。




欢迎光临 开发者俱乐部 (http://xodn.com/) Powered by Discuz! X3.2