(1)辗转相除法
有两整数a和b:
① a%b得余数c
② 若c=0,则b即为两数的最大公约数
③ 若c≠0,则a=b,b=c,再回去执行①
例如求27和15的最大公约数过程为:
27÷15 余1215÷12余312÷3余0因此,3即为最大公约数
#include<stdio.h>
void main() /* 辗转相除法求最大公约数 */
{
int m, n, a, b, t, c;
printf("Input two integer numbers:\n");
scanf("%d%d", &a, &b);
m=a; n=b;
while(b!=0) /* 余数不为0,继续相除,直到余数为0 */
{ c=a%b; a=b; b=c;}
printf("The largest common divisor:%d\n", a);
printf("The least common multiple:%d\n", m*n/a);
}
复制代码
⑵ 相减法
有两整数a和b:
① 若a>b,则a=a-b
② 若a<b,则b=b-a
③ 若a=b,则a(或b)即为两数的最大公约数
④ 若a≠b,则再回去执行①
例如求27和15的最大公约数过程为:
27-15=12( 15>12 ) 15-12=3( 12>3 )
12-3=9( 9>3 ) 9-3=6( 6>3 )
6-3=3( 3==3 )
因此,3即为最大公约数
#include<stdio.h>
void main ( ) /* 相减法求最大公约数 */
{
int m, n, a, b, c;
printf("Input two integer numbers:\n");
scanf ("%d,%d", &a, &b);m=a; n=b;
/* a, b不相等,大数减小数,直到相等为止。*/
while ( a!=b)
if (a>b) a=a-b;
else b=b-a;
printf("The largest common divisor:%d\n", a);
printf("The least common multiple:%d\n", m*n/a);
}
复制代码
⑶穷举法
有两整数a和b:
① i=1
② 若a,b能同时被i整除,则t=i
③ i++
④ 若 i <= a(或b),则再回去执行②
⑤ 若 i > a(或b),则t即为最大公约数,结束
改进:
① i= a(或b)
② 若a,b能同时被i整除,则i即为最大公约数,
结束
③ i--,再回去执行②
有两整数a和b:
① i=1
② 若a,b能同时被i整除,则t=i
③ i++
④ 若 i <= a(或b),则再回去执行②
⑤ 若 i > a(或b),则t即为最大公约数,结束
改进:
① i= a(或b)
② 若a,b能同时被i整除,则i即为最大公约数,
结束
③ i--,再回去执行②