新技术论坛
搜索
查看: 1214|回复: 0
打印 上一主题 下一主题

[Python] Python并发编程之线程池/进程池

[复制链接]
  • TA的每日心情
    开心
    2016-12-9 18:18
  • 签到天数: 85 天

    连续签到: 1 天

    [LV.6]常住居民II

    扫一扫,手机访问本帖
    楼主
    跳转到指定楼层
    发表于 2017-1-10 20:06:09 | 只看该作者 |只看大图 回帖奖励 |正序浏览 |阅读模式
      引言
      Python标准库为我们提供了threading和multiprocessing模块编写相应的多线程/多进程代码,但是当项目达到一定的规模,频繁创建/销毁进程或者线程是非常消耗资源的,这个时候我们就要编写自己的线程池/进程池,以空间换时间。但从Python3.2开始,标准库为我们提供了concurrent.futures模块,它提供了ThreadPoolExecutor和ProcessPoolExecutor两个类,实现了对threading和multiprocessing的进一步抽象,对编写线程池/进程池提供了直接的支持。

      Executor和Future
      concurrent.futures模块的基础是Exectuor,Executor是一个抽象类,它不能被直接使用。但是它提供的两个子类ThreadPoolExecutor和ProcessPoolExecutor却是非常有用,顾名思义两者分别被用来创建线程池和进程池的代码。我们可以将相应的tasks直接放入线程池/进程池,不需要维护Queue来操心死锁的问题,线程池/进程池会自动帮我们调度。
      Future这个概念相信有java和nodejs下编程经验的朋友肯定不陌生了,你可以把它理解为一个在未来完成的操作,这是异步编程的基础,传统编程模式下比如我们操作queue.get的时候,在等待返回结果之前会产生阻塞,cpu不能让出来做其他事情,而Future的引入帮助我们在等待的这段时间可以完成其他的操作。关于在Python中进行异步IO可以阅读完本文之后参考我的Python并发编程之协程/异步IO。
      p.s: 如果你依然在坚守Python2.x,请先安装futures模块。
      pip install futures
      使用submit来操作线程池/进程池
      我们先通过下面这段代码来了解一下线程池的概念
      # example1.py from concurrent.futures import ThreadPoolExecutor import time def return_future_result(message):     time.sleep(2)     return message pool = ThreadPoolExecutor(max_workers=2)  # 创建一个最大可容纳2个task的线程池 future1 = pool.submit(return_future_result, (hello))  # 往线程池里面加入一个task future2 = pool.submit(return_future_result, (world))  # 往线程池里面加入一个task print(future1.done())  # 判断task1是否结束 time.sleep(3) print(future2.done())  # 判断task2是否结束 print(future1.result())  # 查看task1返回的结果 print(future2.result())  # 查看task2返回的结果
      我们根据运行结果来分析一下。我们使用submit方法来往线程池中加入一个task,submit返回一个Future对象,对于Future对象可以简单地理解为一个在未来完成的操作。在第一个print语句中很明显因为time.sleep(2)的原因我们的future1没有完成,因为我们使用time.sleep(3)暂停了主线程,所以到第二个print语句的时候我们线程池里的任务都已经全部结束。
      ziwenxie :: ~  python example1.py False True hello world # 在上述程序执行的过程中,通过ps命令我们可以看到三个线程同时在后台运行 ziwenxie :: ~  ps -eLf | grep python ziwenxie      8361  7557  8361  3    3 19:45 pts/0    00:00:00 python example1.py ziwenxie      8361  7557  8362  0    3 19:45 pts/0    00:00:00 python example1.py ziwenxie      8361  7557  8363  0    3 19:45 pts/0    00:00:00 python example1.py
      上面的代码我们也可以改写为进程池形式,api和线程池如出一辙,我就不罗嗦了。
      # example2.py from concurrent.futures import ProcessPoolExecutor import time def return_future_result(message):     time.sleep(2)     return message pool = ProcessPoolExecutor(max_workers=2) future1 = pool.submit(return_future_result, (hello)) future2 = pool.submit(return_future_result, (world)) print(future1.done()) time.sleep(3) print(future2.done()) print(future1.result()) print(future2.result())
      下面是运行结果
      ziwenxie :: ~  python example2.py False True hello world ziwenxie :: ~  ps -eLf | grep python ziwenxie      8560  7557  8560  3    3 19:53 pts/0    00:00:00 python example2.py ziwenxie      8560  7557  8563  0    3 19:53 pts/0    00:00:00 python example2.py ziwenxie      8560  7557  8564  0    3 19:53 pts/0    00:00:00 python example2.py ziwenxie      8561  8560  8561  0    1 19:53 pts/0    00:00:00 python example2.py ziwenxie      8562  8560  8562  0    1 19:53 pts/0    00:00:00 python example2.py
      使用map/wait来操作线程池/进程池
      除了submit,Exectuor还为我们提供了map方法,和内建的map用法类似,下面我们通过两个例子来比较一下两者的区别。
      使用submit操作回顾
      # example3.py import concurrent.futures import urllib.request URLS = ['http://httpbin.org', 'http://example.com/', 'http://api.github.com/']
      def load_url(url, timeout):     with urllib.request.urlopen(url, timeouttimeout=timeout) as conn:         return conn.read() # We can use a with statement to ensure threads are cleaned up promptly with concurrent.futures.ThreadPoolExecutor(max_workers=3) as executor:     # Start the load operations and mark each future with its URL     future_to_url = {executor.submit(load_url, url, 60): url for url in URLS}     for future in concurrent.futures.as_completed(future_to_url):         url = future_to_url[future]
      try:             data = future.result()         except Exception as exc:             print('%r generated an exception: %s' % (url, exc))         else:             print('%r page is %d bytes' % (url, len(data)))
      从运行结果可以看出,as_completed不是按照URLS列表元素的顺序返回的
      ziwenxie :: ~  python example3.py 'http://example.com/' page is 1270 byte 'http://api.github.com/' page is 2039 bytes 'http://httpbin.org' page is 12150 bytes
      使用map
      # example4.py import concurrent.futures import urllib.request URLS = ['http://httpbin.org', 'http://example.com/', 'http://api.github.com/']
      def load_url(url):     with urllib.request.urlopen(url, timeout=60) as conn:         return conn.read() # We can use a with statement to ensure threads are cleaned up promptly with concurrent.futures.ThreadPoolExecutor(max_workers=3) as executor:     for url, data in zip(URLS, executor.map(load_url, URLS)):         print('%r page is %d bytes' % (url, len(data)))
      从运行结果可以看出,map是按照URLS列表元素的顺序返回的,并且写出的代码更加简洁直观,我们可以根据具体的需求任选一种。
      ziwenxie :: ~  python example4.py 'http://httpbin.org' page is 12150 bytes 'http://example.com/' page is 1270 bytes 'http://api.github.com/' page is 2039 bytes
      第三种选择wait
      wait方法接会返回一个tuple(元组),tuple中包含两个set(集合),一个是completed(已完成的)另外一个是uncompleted(未完成的)。使用wait方法的一个优势就是获得更大的自由度,它接收三个参数FIRST_COMPLETED,  FIRST_EXCEPTION 和ALL_COMPLETE,默认设置为ALL_COMPLETED。
      我们通过下面这个例子来看一下三个参数的区别
      from concurrent.futures import ThreadPoolExecutor, wait, as_completed from time import sleep from random import randint def return_after_random_secs(num):     sleep(randint(1, 5))     return Return of {}.format(num) pool = ThreadPoolExecutor(5) futures = []
      for x in range(5):     futures.append(pool.submit(return_after_random_secs, x)) print(wait(futures)) # print(wait(futures, timeout=None, return_when='FIRST_COMPLETED'))
      如果采用默认的ALL_COMPLETED,程序会阻塞直到线程池里面的所有任务都完成。
      ziwenxie :: ~  python example5.py
      DoneAndNotDoneFutures(done={
      Future at 0x7f0b06c9bc88 state=finished returned str,
      Future at 0x7f0b06cbaa90 state=finished returned str,
      Future at 0x7f0b06373898 state=finished returned str,
      Future at 0x7f0b06352ba8 state=finished returned str,
      Future at 0x7f0b06373b00 state=finished returned str}, not_done=set())
      如果采用FIRST_COMPLETED参数,程序并不会等到线程池里面所有的任务都完成。
      ziwenxie :: ~  python example5.py DoneAndNotDoneFutures(done={ Future at 0x7f84109edb00 state=finished returned str, Future at 0x7f840e2e9320 state=finished returned str, Future at 0x7f840f25ccc0 state=finished returned str}, not_done={Future at 0x7f840e2e9ba8 state=running, Future at 0x7f840e2e9940 state=running})
      思考题
      写一个小程序对比multiprocessing.pool(ThreadPool)和ProcessPollExecutor(ThreadPoolExecutor)在执行效率上的差距,结合上面提到的Future思考为什么会造成这样的结果。



    高级模式
    B Color Image Link Quote Code Smilies

    本版积分规则

    手机版|Archiver|开发者俱乐部 ( ICP/ISP证:辽B-2-4-20110106号 IDC证:辽B-1-2-20070003号 )

    GMT+8, 2024-12-23 10:35 , Processed in 0.131430 second(s), 22 queries .

    X+ Open Developer Network (xodn.com)

    © 2009-2017 沈阳讯网网络科技有限公司

    快速回复 返回顶部 返回列表